Parallel Bisection Algorithms for Solving the Symmetric Tridiagonal Eigenproblem

نویسندگان

  • J. M. BADíA
  • A. M. VIDAL
چکیده

In this paper we study the different approaches used so far to apply the bisection method for solving the symmetric tridiagonal eigenproblem. We review the sequential methods used to perform the final extraction of the eigenvalues and compare two new techniques that offer very good results. The sequential version of the bisection method we have implemented even surpasses the results of the QR iteration in some cases. We also perform an exhaustive survey of the approaches that can be used to parallelize the bisection method and we compare two parallel algorithms that apply different schemes for distributing the computation among the processors. The experimental analysis developed shows that the bisection method, besides its flexibility in the partial computation of the spectrum, is a method that offers very good results when it is adequately parallelized. We also show that the behaviour of the algorithms is clearly matrix-dependent.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New O(n^2) Algorithm for the Symmetric Tridiagonal Eigenvalue/Eigenvector Problem

A New O(n) Algorithm for the Symmetric Tridiagonal Eigenvalue/Eigenvector Problem by Inderjit Singh Dhillon Doctor of Philosophy in Computer Science University of California, Berkeley Professor James W. Demmel, Chair Computing the eigenvalues and orthogonal eigenvectors of an n n symmetric tridiagonal matrix is an important task that arises while solving any symmetric eigenproblem. All practica...

متن کامل

The Modified Splitting Strategy for the Parallel Multisection Algorithm

Based on Cuppen’s divide-and-conquer method [4] and bisection and multisection with the Sturm sequence evaluation coupled with inverse iteration [12, 8, 1], numerous parallel algorithms for solving the eigenvalue problem of real symmetric tridiagonal matrices Tn are presented in the literature [5, 3, 10, 7]. While Cuppen’s divide-and-conquer method achieves the better accuracy results in terms ...

متن کامل

On computing accurate singular values and eigenvalues . . .

[15] D. O'Leary and G. W. Stewart. Computing the eigenvalues and eigenvectors of symmetric arrowhead matrices. [17] A. Sameh and D. Kuck. A parallel QR algorithm for symmetric tridiagonal matrices. [21] Zhonggang Zeng. The acyclic eigenproblem can be reduced to the arrowhead one. [22] Hongyuan Zha. A two-way chasing scheme for reducing a symmetric arrowhead matrix to tridiagonal form. Scientic ...

متن کامل

Trading off Parallelism and Numerical Stability

[80] K. Veseli c. A quadratically convergent Jacobi-like method for real matrices with complex conjugate eigenvalues. [82] D. Watkins and L. Elsner. Convergence of algorithms of decomposition type for the eigenvalue problem. [83] Zhonggang Zeng. Homotopy-determinant algorithm for solving matrix eigenvalue problems and its parallelizations. [69] G. Shro. A parallel algorithm for the eigenvalues ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001